Ricci curvature and monotonicity for harmonic functions
نویسنده
چکیده
In this paper we generalize the monotonicity formulas of [C] for manifolds with nonnegative Ricci curvature. Monotone quantities play a key role in analysis and geometry; see, e.g., [A], [CM1] and [GL] for applications of monotonicity to uniqueness. Among the applications here is that level sets of Green’s function on open manifolds with nonnegative Ricci curvature are asymptotically umbilic.
منابع مشابه
Monotonicity and K ¨ Ahler-ricci Flow
§0 Introduction. In this paper, we shall give a geometric account of the linear trace Li-Yau-Hamilton (which will be abbreviated as LYH) inequality for the Kähler-Ricci flow proved by LuenFai Tam and the author in [NT1]. To put the result, especially the Liouville theorem for the plurisubharmonic functions, into the right perspective we would also describe some dualities existed in both linear ...
متن کاملHarmonic Functions of Linear Growth on Kähler Manifolds with Nonnegative Ricci Curvature
The subject began in 1975, when Yau [Y1] proved that there are no nonconstant, positive harmonic functions on a complete manifold with nonnegative Ricci curvature. A few years later, Cheng [C] pointed out that using a local version of Yau’s gradient estimate, developed in his joint work with Yau [CY], one can show that there are no nonconstant harmonic functions of sublinear growth on a manifol...
متن کاملLOCAL GRADIENT ESTIMATES OF p-HARMONIC FUNCTIONS, 1/H-FLOW, AND AN ENTROPY FORMULA
In the first part of this paper, we prove local interior and boundary gradient estimates for p-harmonic functions on general Riemannian manifolds. With these estimates, following the strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set formulation of the 1/H (inverse mean curvature) flow for hypersurfaces in ambient manifolds satisfying a sharp ...
متن کاملHarmonic Functions of Polynomial Growth on Singular spaces with nonnegative Ricci Curvature
In the present paper, the Liouville theorem and the finite dimension theorem of polynomial growth harmonic functions are proved on Alexandrov spaces with nonnegative Ricci curvature in the sense of Sturm, Lott-Villani and Kuwae-Shioya.
متن کاملHarmonic Maps and the Topology of Manifolds with Positive Spectrum and Stable Minimal Hypersurfaces
Harmonic maps are natural generalizations of harmonic functions and are critical points of the energy functional defined on the space of maps between two Riemannian manifolds. The Liouville type properties for harmonic maps have been studied extensively in the past years (Cf. [Ch], [C], [EL1], [EL2], [ES], [H], [HJW], [J], [SY], [S], [Y1], etc.). In 1975, Yau [Y1] proved that any harmonic funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012